Solutions to RMT-DS1/Set-2

1. (c)
$$29 \times 17 \times 3$$

4. (d)
$$x^2 + x - 12 = 0$$

5. (a) Given,
$$a = 148$$

 $d = 141 - 148 = -7$
Put $a_n < 0$
 $a + (n-1)d < 0$

$$148 + (n-1)(-7) < 0$$

$$148 - 7n + 7 < 0$$

$$155 - 7n < 0$$

 $7n > 155$

Ist negative term when n = 23

$$a_{23} = a + 22(-7)$$

$$= 148 + 22(-7)$$

$$= 148 - 154$$

$$= -6$$

 \therefore 1st negative term of the A.P. is -6.

6. (a) Let ratio be k:1

By section formula;

$$(x, y) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$$

$$(8, 6) = \left(\frac{10k + 5}{k + 1}, \frac{8k + 3}{k + 1}\right)$$

$$\therefore \frac{10k+5}{k+1} = 8$$

$$\Rightarrow 10k+5 = 8k+8$$

$$\Rightarrow$$
 $2k = 3$

$$\Rightarrow \qquad \qquad k = \frac{3}{2} \Rightarrow k : 1 = 3 : 2$$

7. (a)
$$\Delta ABC \sim \Delta PQR$$

$$\frac{AB}{PQ} = \frac{BC}{QR}$$

$$\Rightarrow \frac{2x}{6x} = \frac{3x+1}{7x+9}$$
[: By BPT]

$$\Rightarrow \qquad 7x + 9 = 9x + 3$$

$$\Rightarrow$$
 6 = 2x

$$\therefore$$
 $x = 3$

____ *Mathematics*—10_

8. (b) 1:1
A P B

$$(2x - 5y)$$
 (5.2) $(4x - 3y)$

By mid-point formula;

$$(5, 2) = \left(\frac{2x + 4x}{2}, \frac{5y + 3y}{2}\right)$$

$$\Rightarrow$$

$$(5, 2) = (3x, 4y)$$

$$\Rightarrow$$

$$3x = 5 \quad \text{and} \quad 4y = 2$$

$$x = \frac{5}{3} \quad \text{and} \quad y = \frac{1}{2}$$

$$3 \tan \theta = \sqrt{3}$$

$$\Rightarrow$$

$$\tan \theta = \frac{\sqrt{3}}{3} \times \frac{\sqrt{3}}{\sqrt{3}}$$

$$=\frac{3}{3\sqrt{3}}$$

$$\Rightarrow$$

$$\tan \theta = \frac{1}{\sqrt{3}} \Rightarrow \theta = 30^{\circ}$$

10. (*d*) Given,
$$\frac{\sin 30^{\circ} \times \cot 45^{\circ}}{\sec 30^{\circ}}$$

$$=\frac{\frac{1}{2}\times 1}{\frac{2}{\sqrt{3}}}$$

$$=\frac{1}{2}\times\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{4}$$

11. (*a*)

$$\frac{h_1}{x}$$
 = tan 60° and $\frac{h_2}{x}$ = tan 30°

$$\Rightarrow$$

$$h_1 = x\sqrt{3}$$
 and $h_2 = \frac{x}{\sqrt{3}}$

$$\frac{h_1}{h_2} = \frac{x\sqrt{3}}{\frac{x}{\sqrt{3}}} = \frac{3}{1}$$

$$\Rightarrow$$

$$h_1: h_2 = 3:1$$

_____ *Mathematics*—10_

12. (b) $\angle PTO = 90^{\circ}$ [The tangent is perpendicular to the radius drawn through point of contact]

Ιη ΔΡΤΟ,

⇒
$$x = \angle T + \angle P = 90^{\circ} + 30^{\circ}$$
 [Exterior angle property of a triangle]
∴ $x = 120^{\circ}$

13. (a) In quadrilateral ABCD,

$$AB + DC = AD + BC$$

$$\Rightarrow AB + 9 = 10 + 5$$

$$\Rightarrow AB = 15 - 9$$

$$\Rightarrow AB = 6 \text{ cm}$$

14. (d) Area of sector $=\frac{1}{6} \times \text{Area of circle}$

$$\Rightarrow \qquad \pi r^2 \frac{\theta}{360^\circ} = \frac{1}{6} \pi r^2$$

$$\Rightarrow \qquad \theta = \frac{1}{6} \times 360^\circ$$

$$\therefore \qquad \theta = 60^\circ$$

15. (b) $\frac{r^2}{2} \left[\frac{\pi \theta}{180^{\circ}} - \sin \theta \right]$

16. (b) Multiple of 3 from 2 to 22 = {3, 6, 9, 12, 15, 18, 21}

Number of favourable outcomes = 7

Total outcomes = 21

$$P(E) = \frac{7}{21} = \frac{1}{3}$$

17. (b)
$$\frac{12}{7}$$
 [: $0 \le P(E) \le 1$]

18. (a) Mean: Median = 5:4

Let Mean = 5x and Median = 4x

We know that, $\text{Mode} = 3 \text{ median} - 2 \text{ mean} = 3 \times 4x - 2 \times 5x$ = 12x - 10x = 2x

Now,
$$\frac{\text{Mode}}{\text{Median}} = \frac{2x}{4x} = \frac{1}{2}$$

 \therefore Mode: Median = 1:2

- 19. (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- **20.** (a) Both assertion (A) and reason (R) are true and reason (R) is correct explanation of assertion (A).
- **21.** Let $2 + 3\sqrt{3}$ is a rational number.

$$2 + 3\sqrt{3} = \frac{a}{b}$$
 [where a and b are coprime integers]
$$3\sqrt{3} = \frac{a}{b} - 2$$

_____ *Mathematics*—10_____

$$\sqrt{3} = \frac{a - 2b}{3b}$$

Here, a and b are integers.

 $\therefore \frac{a-2b}{3b}$ is also a rational number i.e. $\sqrt{3}$ also rational.

But this contradicts the fact that $\sqrt{3}$ is an irrational.

This contradiction has arisen due to our wrong assumption.

Hence, $2 + 3\sqrt{3}$ is an irrational number.

22. Given: \triangle ABC and \triangle DBC on same base BC. AD Intersects BC at O.

To prove:
$$\frac{\text{Area of } \Delta \text{ABC}}{\text{Area of } \Delta \text{DBC}} = \frac{\text{AO}}{\text{DO}}$$

Construction: Draw AM \perp BC and DN \perp BC

Proof: In $\triangle AOM$ and $\triangle DON$

[∵ Each 90°]

[: Vertically opposite angles]

$$\triangle$$
 AOM ~ \triangle DON [AA similarity rule]

$$\therefore \frac{AO}{DO} = \frac{AM}{DN} \qquad ...(i) \quad [\because CPST]$$

Now,
$$\frac{\text{Area of } \triangle ABC}{\text{Area of } \triangle DBC} = \frac{\frac{1}{2} \times BC \times AM}{\frac{1}{2} \times BC \times DN}$$

$$\frac{\text{Area of } \Delta \text{ABC}}{\text{Area of } \Delta \text{DBC}} = \frac{\text{AM}}{\text{DN}} \qquad ...(ii)$$

From equation (i) and (ii)

$$\frac{\text{Area of } \Delta \text{ABC}}{\text{Area of } \Delta \text{DBC}} = \frac{\text{AO}}{\text{DO}}$$

Hence proved.

23.
$$\sin^2\theta \cot^2\theta = 1 - \cos^2\theta \tan^2\theta$$

LHS
$$\sin^2\theta \cot^2\theta$$

$$\Rightarrow \qquad \sin^2\theta \times \frac{\cos^2\theta}{\sin^2\theta} = \cos^2\theta$$

RHS
$$1 - \cos^2\theta \tan^2\theta$$

$$\Rightarrow$$
 $1 - \cos^2\theta \times \frac{\sin^2\theta}{\cos^2\theta}$

$$\Rightarrow 1 - \sin^2 \theta = \cos^2 \theta$$

$$\therefore$$
 LHS = RHS

$$\sin \theta = \frac{4}{5} = \frac{\text{Perpendicular (P)}}{\text{Hypotenuse (H)}}$$

Let

$$P = 4x$$

$$H = 5x$$

By pythagoras;

$$\Rightarrow$$

$$H^2 = P^2 + B^2$$

$$\Rightarrow$$

$$(5x)^2 = (4x)^2 + B^2$$

$$\rightarrow$$

$$25x^2 = 16x^2 + B^2$$

$$\Rightarrow$$

$$B^2 = 9x^2$$

$$\Rightarrow$$

$$B = 3x$$

$$\sec \theta = \frac{H}{B} = \frac{5x}{3x} = \frac{5}{3},$$

$$\tan \theta = \frac{P}{B} = \frac{4x}{3x} = \frac{4}{3},$$

and

$$\cot \theta = \frac{B}{P} = \frac{3x}{4x} = \frac{3}{4}$$

24. Given: A circle with centre O. AB is the diameter, PQ and RS are two tangents with points of contact A and B.

To prove:

Proof: The tangent to a circle is perpendicular to the radius through the point of contact.

$$\angle PAB = \angle ABS$$

[Each 90°]

If alternate interior angles are equal, then lines are parallel.

В

‡s

25. \triangle ABC is an equilateral triangle.

$$\angle A = \angle B = \angle C = 60^{\circ}$$

Each sides 6 cm i.e. radius of each sector

$$r = 3$$
 cm

Area of shaded region = $3 \times$ Area of sectors

$$= 3 \times \frac{\pi r^2 \theta}{360^{\circ}}$$

$$= 3 \times \frac{22}{360^{\circ}} \times 3 \times \frac{3}{360^{\circ}}$$

$$=\frac{99}{7} \text{ cm}^2$$

Mathematics—10

Radius of sector = r = 7 cm

with central angle, $\theta = 30^{\circ}$

Perimeter of OPQ =
$$2r$$
 + length of arc PQ
= $2r + \frac{\pi r \theta}{180^{\circ}}$
= $2 \times 7 + \frac{22}{7} \times \frac{7 \times 30^{\circ}}{180^{\circ}}$
= $14 + \frac{11}{3}$
= $14 + 3.67$
= 17.67 cm

26.	Mass of Mangoes (in gm)	Number of Mangoes (f_i)		
	120 – 160	16		
	160 – 200	$18 \rightarrow f_0$		
	200 – 240	$20 \rightarrow f_1$		
	240 – 280	$x \rightarrow f_2$		
	280 - 320	14		
	320 - 360	7		
	360 – 400	6		
		100		

$$\Rightarrow 81 + x = 100$$

$$\therefore x = 19$$
Now,
$$f_1 = 20, f_0 = 18, l = 200$$

$$f_2 = 19, h = 40$$

$$\text{Mode mass} = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

$$= 200 + \left(\frac{20 - 18}{2 \times 20 - 18 - 19}\right) \times 40$$

$$= 200 + \left(\frac{2}{40 - 37}\right) \times 40$$

$$= 200 + \frac{80}{3} = \frac{680}{3} = 226.6 \text{ gm}$$

_____ *Mathematics*—10_

27. Given: A circle with centre O, AB is a tangent with point of contact P.

To prove:

Construction: Mark points P₁, P₂, P₃ on AB, other than P and join OP₁, OP₂, OP₃

Proof:

 $OP_1 > Radius$

OP₂ > Radius

 $OP_3 > Radius$

OP = Radius

$$\therefore$$
 OP₁, OP₂, OP₃ > OP

i.e. OP is the shortest distance of AB from O, and shortest distance is always perpendicular.

Hence,

 $OP \perp AB$

OR

The lengths of tangents drawn from an external point are equal.

$$AD = AF = x$$
 (let)

$$BD = BE = y$$
 (let)

$$CE = CF = z$$
 (let)

$$x + y = 13 \text{ cm}$$

$$y + z = 14 \text{ cm}$$

$$x + z = 15 \text{ cm}$$

...(*iii*)

Subtract equation (i) from (ii)

$$y + z = 14$$

$$x + y = 13$$

$$z - x = 1$$

...(iv)

Add equation (iii) and (iv)

$$x + z = 15$$

$$z - x = 1$$

$$z - x - 1$$

$$\ddot{\cdot}$$

$$2z = 16$$

$$\Rightarrow$$

$$z = 8 \text{ cm}$$

Put the value of z in equation (iii)

$$x + 8 = 15$$

$$\Rightarrow$$

$$x = 15 - 8 = 7$$
 cm

Put the value of x in equation (i)

$$7 + y = 13$$

$$\Rightarrow$$

$$y = 13 - 7 = 6$$
 cm

__ Mathematics—10_____

BD = y = 6 cm∴.

EC = z = 8 cm

AF = x = 7 cmand

28.

Area enclosed by these lines with x-axis and y-axis is in the shape of rectangle OABC.

Area of enclosed region =
$$l \times b$$

= OA × OC
= 4×2
= 8 square unit

OR

Let the unit digit be x and tens digit be y.

 \therefore Two digit number = 10y + x

ATQ,

$$x + y = 11 \qquad \qquad \dots(i)$$

(10x + y) - (10y + x) = 45and

Mathematics—10

$$\Rightarrow 10x + y - 10y - x = 45$$

$$\Rightarrow 9x - 9y = 45$$

$$\Rightarrow 9(x - y) = 45$$

$$\Rightarrow x - y = 5 \qquad \dots(ii)$$

Add equation (i) and (ii)

 \Rightarrow

$$x + y = 11$$

$$x - y = 5$$

$$2x = 16$$

x = 8

Put the value of x in equation (i)

$$\Rightarrow \qquad \qquad 8 + y = 11 \Rightarrow y = 3$$

 $\therefore Two digit number = 10y + x$

$$= 10 \times 3 + 8 = 30 + 8 = 38$$

29.
$$\frac{\sin \theta}{\cot \theta + \csc \theta} - \frac{\sin \theta}{\cot \theta - \csc \theta} = 2$$

LHS =
$$\frac{\sin \theta}{\cot \theta + \csc \theta} - \frac{\sin \theta}{\cot \theta - \csc \theta}$$

$$= \frac{\sin \theta (\cot \theta - \csc \theta) - \sin \theta (\cot \theta + \csc \theta)}{(\cot \theta + \csc \theta)}$$

$$= \frac{\sin \theta (\cot \theta - \csc \theta) (\cot \theta - \csc \theta)}{(\cot^2 \theta - \csc^2 \theta)}$$

$$= \frac{\sin \theta \times (-2 \csc \theta)}{-(\csc^2 \theta - \cot^2 \theta)}$$

$$= \frac{\sin \theta \times 2 \csc \theta}{1}$$

$$= \frac{\sin \theta \times 2 \csc \theta}{\sin \theta}$$

$$= 2 = RHS$$

$$(\because \csc \theta = \frac{1}{\sin \theta})$$

30. Length of step of 1st friend = 72 cm

:.

Length of step of 2nd friend = 80 cm

Length of step of 3rd friend = 84 cm

Minimum distance each should run in complete steps = LCM of 72, 80 and 84

LHS = RHS

_ Mathematics—10__

By prime factorisation method;

$$= 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 7$$

= 5040 cm

$$x^2 - 3\sqrt{3}x + 6 = 0$$

$$\Rightarrow \qquad x^2 - 2\sqrt{3}x - \sqrt{3}x + 6 = 0$$

$$\Rightarrow \qquad x(x - 2\sqrt{3}) - \sqrt{3}(x - 2\sqrt{3}) = 0$$

$$\Rightarrow \qquad (x - 2\sqrt{3})(x - \sqrt{3}) = 0$$

$$x - 2\sqrt{3} = 0$$
 and $x - \sqrt{3} = 0$

$$x = 2\sqrt{3}$$
 and $x = \sqrt{3}$

$$\therefore \qquad \qquad \alpha = 2\sqrt{3} \ \ \text{and} \ \ \beta \ = \ \sqrt{3}$$

Now, sum of zeroes;
$$\alpha + \beta = 2\sqrt{3} + \sqrt{3} = 3\sqrt{3}$$

and
$$-\frac{b}{a} = \frac{-(-3\sqrt{3})}{1} = \frac{3\sqrt{3}}{1} = 3\sqrt{3}$$

$$\therefore \qquad \qquad \alpha + \beta = \frac{-b}{a}$$

Product of zeroes;
$$\alpha\beta = 2\sqrt{3} \times \sqrt{3} = 2 \times 3 = 6$$

and
$$\frac{c}{a} = \frac{6}{1} = 6$$

$$\therefore \qquad \alpha \beta = \frac{c}{a}$$

:. Relationship between zeroes and their coefficients is verified.

32. In \triangle BMC and \triangle EMD,

$$MC = MD$$

$$\angle CMB = \angle EMD$$

[: M is the mid-point of CD]

[Vertically opposite angles]

$$\angle$$
MBC = \angle MED

[as AE | BC i.e. Alternate interior angles]

ADMC & AEMD

[AAS congruence rule]

$$ΔBMC \cong ΔEMD$$

$$∴ BC = DE$$

$$BC = DE$$
 (CPCT)...(i)
 $AD = BC$

[opposite sides of a | |gm]

Also,

i.e.

$$BC = AD$$

...(ii)

Add equation (i) and (ii)

$$BC + BC = AD + DE$$

 $2BC = AE$

...(iii) A D

In $\triangle AEL$ and $\triangle CBL$

$$\angle EAL = \angle BCL$$

[Alternate interior angles]

[Vertically opposite angles]

[AA similarity rule]

$$\therefore \frac{EL}{BL} = \frac{AE}{BC}$$

$$\frac{EL}{BL} = \frac{2BC}{BC}$$
 [from (iii)]

$$\therefore$$
 EL = 2BL

Hence proved

33.
$$4x^2 - 4a^3x + (a^6 - b^6) = 0$$

Discriminant;
$$D = B^2 - 4AC$$

$$= (-4a^3)^2 - 4 \times 4(a^6 - b^6)$$

$$= 16a^6 - 16(a^6 - b^6)$$

$$= 16(a^6 - a^6 + b^6)$$

$$= 16b^6 \ge 0$$

.. Two real roots exist.

i.e.,

$$x = \frac{-B \pm \sqrt{D}}{2A} = \frac{-(-4a^3) \pm \sqrt{16b^6}}{2 \times 4} = \frac{4a^3 \pm 4b^3}{8}$$

$$x = \frac{a^3 \pm b^3}{2}$$

$$\therefore x = \frac{a^3 + b^3}{2} \text{ and } \frac{a^3 - b^3}{2}$$

OR

$$(a - b)x^{2} + (b - c)x + (c - a) = 0$$

For equal roots, $B^2 - 4AC = 0$

$$(b-c)^2 - 4(a-b)(c-a) = 0$$

$$\Rightarrow$$
 $b^2 + c^2 - 2bc - 4(ac - a^2 - bc + ab) = 0$

$$\Rightarrow b^2 + c^2 - 2bc - 4ac + 4a^2 + 4bc - 4ab = 0$$

$$\Rightarrow$$
 $4a^2 + b^2 + c^2 - 4ab + 2bc - 4ac = 0$

$$\Rightarrow$$
 $(-2a)^2 + b^2 + c^2 + 2(-2a)b + 2bc + 2(-2a)c = 0$ [: a^2

$$[\because a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = (a + b + c)^2]$$

$$\therefore \qquad (-2a + b + c)^2 = 0$$

$$-2a + b + c = 0$$

Proved

_____ Mathematics—10_

2a = b + c

If roots are equal then

$$x = \frac{-B}{2A}, \frac{-B}{2A}$$

$$= \frac{-(b-c)}{2(a-b)}, \frac{-(b-c)}{2(a-b)}$$

$$x = \frac{c-b}{2(a-b)}, \frac{c-b}{2(a-b)}$$

:.

34.	Length of leaves (in cm)	No. of leaves f_i	x_{i}	$d_i = x_i - a$	$f_i d_i$	cf
,	0 – 3	12	1.5	-6	-7 2	12
	3 – 6	6	4.5	-3	-18	18
	6 – 9	10	7.5 = A	0	0	28
	9 – 12	13	10.5	3	39	41
	12 – 15	9	13.5	6	54	50

Let the assumed mean (A) = 7.5

Mean
$$\bar{x} = A + \frac{\sum f_i d_i}{\sum f_i} = 7.5 + \frac{3}{50} = 7.5 + 0.06 = 7.56 \text{ cm}$$

and Median =
$$l + \left(\frac{\frac{N}{2} - cf}{f}\right) \times h$$

where,
$$\frac{N}{2} = 25$$
, $f = 10$, $cf = 18$, $l = 6$ and $h = 3$

:. Median =
$$6 + \left(\frac{25-18}{10}\right) \times 3 = 6 + \frac{7 \times 3}{10} = 6 + 2.1 = 8.1 \text{ cm}$$

35. Condition I:

Radius of conical part (r) = Radius of hemispherical part (r)

$$=\frac{4}{2}=2 \text{ cm}$$

Height of conical part (h) = 2 cm

$$Volume of toy = \frac{1}{3}\pi r^2 h + \frac{2}{3}\pi r^3$$

$$= \frac{1}{3}\pi \times 2^2 \times 2 + \frac{2}{3}\pi \times 2^3 = (1+2)\frac{1}{3}\pi \times 2^3$$

$$= 3 \times \frac{1}{3} \times \pi \times 2^3 = 8 \times 3.14 = 25.12 \text{ cm}^3$$

Radius of cylinder (r) = 2 cm

Height of cylinder (H) = height of cone + Radius of hemisphere
=
$$h + r$$

$$= 2 + 2$$

$$= 4 \text{ cm}$$

Volume of cylinder = πr^2 H = 3.14 × 2 × 2 × 4 = 50.24 cm³

 \therefore Difference of volume of cylinder and toy = $50.24 - 25.12 = 25.12 \text{ cm}^3$

+3

Height of cylinder (h) = 12 cm

Radius of cylinder (r) = Radius of hemisphere (r) = 3.5 cm

Total surface area of remaining solid = C.S.A of cylinder + $2 \times$ C.S.A. of hemisphere

$$= 2\pi rh + 2 \times 2\pi r^2 = 2\pi r(h + 2r)$$

$$= 2 \times \frac{22}{7} \times 3.5 \times (12 + 2 \times 3.5)$$

$$= 22(12 + 7) = 418 \text{ cm}^2$$

36. (i) Total distance covered by Dev watering 2nd tree and coming back

$$= 2 \times 4 + 2 \times 10$$

$$= 28 \text{ m}$$

(ii) Distance covered by Dev watering 1st tree and coming back $(a_1) = 8 \text{ m}$

Distance covered by Dev watering 2nd tree and coming back $(a_2) = 20 \text{ m}$

Distance covered by Dev watering 3rd and coming back $(a_3) = 32 \text{ m}$

$$\therefore d = a_2 - a_1 = a_3 - a_2 = 12$$

Since, difference is common.

.: Yes, obtained sequence is an A.P.

$$(iii) a_7 = a + 6d$$

$$= 8 + 6 \times (12)$$

$$= 8 + 72$$

$$= 80 \text{ m}$$

OR

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$S_{20} = \frac{20}{2} [2 \times 8 + (20 - 1) \times 12] = 10[16 + 228] = 2440 \text{ m}$$

37.

As

$$\angle ECA = \angle CAD = 30^{\circ}$$

[Alternate interior angles]

and

$$\angle$$
FCB = \angle CBD = 60°

(i) In ΔADC

$$\frac{DC}{AC} = \sin 30^{\circ}$$

$$\frac{60}{AC} = \frac{1}{2}$$

 \therefore AC = 120 m

_ Mathematics—10_

(ii) In ΔBDC

$$\frac{DC}{BC} = \sin 60^{\circ}$$

$$\Rightarrow \frac{60}{BC} = \frac{\sqrt{3}}{2}$$

$$\Rightarrow \sqrt{3}BC = 120$$

$$\Rightarrow BC = \frac{120}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = 40\sqrt{3} \text{ m}$$

(iii) In ΔADC

$$\frac{DC}{AD} = \tan 30^{\circ}$$

$$\Rightarrow \frac{60}{AD} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow AD = 60\sqrt{3} = 60 \times 1.732 = 103.92 \text{ m}$$

In ΔBDC

$$\frac{DC}{BD} = \tan 60^{\circ}$$

$$\frac{60}{BD} = \sqrt{3}$$

$$\Rightarrow \qquad \sqrt{3} BD = 60$$

$$\Rightarrow \qquad BD = \frac{60}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = 20 \times 1.732 = 34.64 \text{ m}$$

$$\therefore \qquad \text{Width of River} = AD + BD$$

$$= 103.92 + 34.64$$

$$= 138.56 \text{ m}$$

OR

Speed of boat =
$$\frac{\text{Distance}}{\text{Time}}$$

= $\frac{138.56}{15}$ = 9.24 m/min

- **38.** (*i*) (5, 2)
 - (ii) (-5, 7)
 - (iii) Distance between Prime Minister's seat and opposition Minister's seat

=
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
 = $\sqrt{(-5 - 5)^2 + (7 - 2)^2}$ = $\sqrt{125}$ = $5\sqrt{5}$ units

OR

Distance between origin and PM's seat = $\sqrt{(5-0)^2 + (2-0)^2}$ = $\sqrt{25+4}$ = $\sqrt{29}$ units

Distance between origin and opposition Minister's seat = $\sqrt{(-5-0)^2 + (7-0)^2}$ = $\sqrt{25+49}$ = $\sqrt{74}$ units