Solutions to RMT-DS2/Set-3 1. (c) $$LCM = \frac{15 \times 85}{5} = 255$$ - 2. (c) As, the graph of given polynomial, y = f(x) does not intersect x-axis, so it has no zeroes. - 3. (b) As, lines represented by $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are intersecting if $$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$ So, ax + by = c and qx + py = r are intersecting if $\frac{a}{q} \neq \frac{b}{p}$ **4.** (a) The given quadratic equation is: $$3kx^2 - 6kx + 2 = 0$$ For real and equal roots $$D = 0$$ $$b^{2} - 4ac = 0$$ $$\Rightarrow (-6k)^{2} - 4 \times 3k \times 2 = 0$$ $$\Rightarrow 36k^{2} - 24k = 0$$ $$\Rightarrow 12k[3k - 2] = 0$$ $$\Rightarrow k = \frac{2}{3} \text{ or } k = 0 \text{ (rejected)}$$ So, $$k = \frac{2}{3}$$ **5.** (b) $$a_{100} - a'_{100} = -3 + 99d - 4 - 99d = -7$$ [: $a_n = a + (n-1)d$] Let P be the point of division that divides AB in the ratio of k:1 Now, P lies on y-axis, so its abscissa is 0. :. By section formula: $$0 = \frac{k \times 5 + 1 \times (-2)}{k+1} \Rightarrow k = \frac{2}{5}$$ So, required ratio = 2:5 7. *(a)* Since BP is median to AC, so P is mid-point of AC. $$\therefore \text{ Coordinates of P} = \left(\frac{5-3}{2}, \frac{1-1}{2}\right) = (1, 0)$$ Length of median BP = $\sqrt{(1-1)^2 + (5-0)^2}$ $$= \sqrt{0+25} = 5 \text{ units}$$ **8.** (b) In $\triangle CAB$, DE | AB, then $$\frac{AD}{DC} = \frac{BE}{EC}$$ $$\Rightarrow \frac{8x+9}{x+3} = \frac{3x+4}{x}$$ $$\Rightarrow 5x^2 - 4x - 12 = 0$$ $$\Rightarrow (x-2)(5x+6) = 0$$ $$\Rightarrow x = 2 \text{ or } x = \frac{-6}{5} \text{ (rejected)}$$ (BPT) **9.** (b) Let O be the centre of circle. Let XY be tangent to circle at Y. As, tangent is \perp to the radius at the point of contact, then Now, $$OX^2 = OY^2 + XY^2$$ $$\Rightarrow (17)^2 = OY^2 + (15)^2 \Rightarrow OY^2 = 289 - 225 = 64$$ $$\Rightarrow OY = 8 \text{ cm}$$ (Pythagoras Theorem) 10. (c) Let O be the centre of two concentric circles. Let AB is the chord of larger circle that is tangent to smaller circle at point L. As tangent is \bot to radius, so \angle OLA = 90° Now, $$AL^2 = OA^2 - OL^2$$ (Pythagoras Theorem) = $(37)^2 - (12)^2 = 1369 - 144 = 1225 = (35)^2$ \Rightarrow $AL = 35 \text{ cm}$ Now, \perp drawn from centre of circle to the chord bisects the chord. So, $$AB = 2AL = 70 \text{ cm}$$ 11. (c) $\cos \theta = \frac{b}{a}, \sin \theta = \sqrt{1 - \frac{b^2}{a^2}}$ $$\Rightarrow \qquad \sin \theta = \frac{\sqrt{a^2 - b^2}}{a}$$ $$\Rightarrow \qquad \csc \theta = \frac{1}{\sin \theta} = \frac{a}{\sqrt{a^2 - b^2}}$$ 12. (b) $$\frac{x}{a} = \sec \theta, \frac{y}{b} = \tan \theta$$ $$\sec^2\theta - \tan^2\theta = 1 \Rightarrow \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$ 13. (a) Let AB = tree, BC = shadow and θ = angle of elevation Now, $$\tan \theta = \frac{AB}{BC} = \frac{2}{2\sqrt{3}}$$ $$\Rightarrow \tan \theta = \frac{1}{\sqrt{3}}$$ **14.** (a) Perimeter of quadrant = 3.75 cm $$\Rightarrow \frac{\pi r}{2} + 2r = 3.75$$ $$\Rightarrow \frac{22}{7} \times \frac{r}{2} + 2r = 3.75$$ $$\Rightarrow \qquad r\left[\frac{11}{7} + 2\right] = 3.75$$ $$\Rightarrow \qquad r \times \frac{25}{7} = 3.75$$ $$r = 1.05 \text{ cm} = 10.5 \text{ mm}$$ $\theta = 30^{\circ}$ $$[:: 1 \text{ cm} = 10 \text{ mm}]$$ **15.** (b) Area of field left ungrazed = $5 \times 7 - \frac{1}{4} \times \frac{22}{7} \times 25$ $$= 35 - \frac{275}{14}$$ $$= 35 - 19.64$$ $$= 15.36 \text{ m}^2$$ - **16.** (b) Required probability = $\frac{4+1}{4+2+1} = \frac{5}{7}$ - **17.** (a) Favourable outcomes: 28, 35, 42, 49, 56, 63 Total cards: 43 $$\therefore \qquad \text{Required probability} = \frac{\text{Number of favourable outcomes}}{\text{Total number of possible outcomes}} = \frac{6}{43}$$ **18.** (c) The continuous frequency distribution table is | Age (in years) | 4 – 7 | 7 – 10 | 10 - 13 | 13 – 16 | |--------------------|-------|--------|---------|---------| | Number of students | 8 | 2 | 7 | 7 | So, frequency of class 10 - 13 is 7. - 19. (a) Both Assertion (A) and Reason (R) are true and Reason (R) is correct explanation of Assertion (A). - **20.** (d) Assertion (A) is false but reason (R) is true. - **21.** The prime factorisation of 135 and 714: $$135 = 3^{3} \times 5$$ $$714 = 2 \times 3 \times 7 \times 17$$ $$HCF(135, 714) = 3$$ $$LCM (135, 714) = 2 \times 3^{3} \times 5 \times 7 \times 17$$ $$= 32130$$ __ Mathematics—10__ ## 22. In $\triangle ABC$, DE || BC, then $$\frac{AD}{DB} = \frac{AE}{EC} \qquad (BPT) \dots (i)$$ As $$DB = EC \qquad (Given)$$ $$\Rightarrow \qquad AD = AE \qquad [From (i)]$$ $$\therefore \qquad AD + BD = AE + EC \qquad [\because BD = CE]$$ $$\Rightarrow \qquad AB = AC$$ $$\Rightarrow \Delta ABC \text{ is isosceles.}$$ 23. $$\angle POQ + \angle POA = 180^{\circ}$$ (Linear pair) $$\Rightarrow$$ $\angle POQ + 58^{\circ} = 180^{\circ}$ $$\Rightarrow$$ $\angle POQ = 122^{\circ}$ In $$\triangle OQP$$, $OP = OQ$ (radii) $$\Rightarrow$$ $\angle OQP = \angle OPQ$ (Angles opposite to equal sides are equal) Now, $$\angle OPQ + \angle OQP + \angle POQ = 180^{\circ}$$ $$\Rightarrow$$ 2 \angle OQP = 180° - 122° $$\Rightarrow$$ $\angle OQP = 29^{\circ}$ As, tangent to a circle is \perp to its radius at the point of contact, then $\angle OAL = 90^{\circ}$ In $$\triangle QAL$$, $\angle AQL + \angle QAL + \angle ALQ = 180^{\circ}$ (Angle sum property of a \triangle) $$\Rightarrow$$ 29° + 90° + \angle ALP = 180° $$\Rightarrow$$ $\angle ALP = 61^{\circ}$ 24. $$7 \sin^2 \theta + 3 \cos^2 \theta = 4$$ $$\Rightarrow 4\sin^2\theta + 3(\sin^2\theta + \cos^2\theta) = 4$$ $$\Rightarrow \qquad 4 \sin^2 \theta + 3 = 4$$ $$\Rightarrow \qquad 4\sin^2\theta = 1 \Rightarrow \sin^2\theta = \frac{1}{4} \Rightarrow \sin\theta = \frac{1}{2}$$ $$\Rightarrow$$ $\theta = 30^{\circ}$ OR $$3\left(x^2 - \frac{1}{x^2}\right) = 3\left[\frac{\csc^2\theta}{9} - \frac{\cot^2\theta}{9}\right]$$ $$= \frac{3}{9}(\csc^2\theta - \cot^2\theta)$$ $$= \frac{1}{3} \times 1 = \frac{1}{3}$$ __ Mathematics—10_ 25. Length of arc of each quadrant = $$\frac{\theta}{360^{\circ}} \times 2\pi r$$ = $\frac{90^{\circ}}{360^{\circ}} \times 2 \times 3.14 \times 2$ = 3.14 cm $$\therefore \qquad \text{Length of arc of 4 quadrants} = 4 \times 3.14$$ $$= 12.56 \text{ cm}$$ Now, perimeter of shaded region = $$12.56 + 4 \times (7 - 2 \times 2) = 12.56 + 4 \times 3$$ = $12.56 + 12$ = 24.56 cm OR Length of arc $$(l) = \frac{\theta}{180^{\circ}} \times \pi r$$ $$8.8 = \frac{30^{\circ}}{180^{\circ}} \times \frac{22}{7} \times r$$ $$\Rightarrow \qquad r = \frac{8.8 \times 6 \times 7}{22} = 16.8 \text{ cm}$$ $$\text{Area} = \frac{\theta}{360^{\circ}} \times \pi r^{2}$$ $$\therefore \qquad \text{Area} = \frac{30^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 16.8 \times 16.8$$ $$= 73.92 \text{ cm}^{2}$$ 26. It is given that 3 consecutive traffic lights change after 36 sec, 42 sec and 72 sec. If they change simultaneously, then we need to find least common multiple of three timings. $$36 = 2^{2} \times 3^{2}$$ $$42 = 2 \times 3 \times 7$$ $$72 = 2^{3} \times 3^{2}$$ $$LCM = 2^{3} \times 3^{2} \times 7$$ $$= 504 \text{ seconds}$$ $$= 480 \text{ seconds} + 24 \text{ seconds}$$ $$= 8 \text{ minutes } 24 \text{ seconds}$$ They will change simultaneously at 07:08:24 am 27. α and β are zeroes of quadratic polynomial $2x^2 + 5x + k$. $$\alpha + \beta = -\frac{5}{2}, \ \alpha\beta = \frac{k}{2}$$ Now, $$(\alpha + \beta)^2 - \alpha\beta = 24 \text{ (given)}$$ $$\Rightarrow \qquad \left(\frac{-5}{2}\right)^2 - \frac{k}{2} = 24$$ $$\Rightarrow \frac{25}{4} - \frac{k}{2} = 24 \Rightarrow \frac{k}{2} = \frac{25}{4} - 24$$ $$\Rightarrow \qquad \frac{k}{2} = \frac{25 - 96}{4} \Rightarrow k = \frac{-71}{2}$$ _____ Mathematics—10_ 28. The given system of equations is, $$2x - y = -10$$...(*i*) $$-6x + y = 30$$...(ii) Adding (i) and (ii), we get $$2x - 6x = -10 + 30$$ $$-4x = 20 \Rightarrow x = -5$$ Substitute x = -5 in (i), we get $$2(-5) - y = -10$$ $$\Rightarrow -10 - y = -10$$ $$\Rightarrow y = 0$$ $\therefore x = -5; y = 0 \text{ is the solution}$ OR Let total number of rows = y Let number of students in each row = x $$\therefore$$ Total students = xy ATQ, $$(x + 4)(y - 2) = xy$$ $\Rightarrow xy - 2x + 4y - 8 = xy$ $\Rightarrow -2x + 4y - 8 = 0$ $\Rightarrow x - 2y + 4 = 0$...(i) and $(x - 4)(y + 4) = xy$ $\Rightarrow xy + 4x - 4y - 16 = xy$ $\Rightarrow x - y - 4 = 0$...(ii) Solving (i) and (ii), we get $$x - 2y + 4 = 0$$ $$x - y - 4 = 0$$ $$(-) (+) (+)$$ $$-y + 8 = 0 \Rightarrow y = 8$$ From (i), $x - 16 + 4 = 0 \Rightarrow x = 12$ \therefore Number of students = 12 × 8 = 96 29. Join O to L. As, tangent to a circle is always perpendicular to its radius at the point of contact, then Now, $$\angle XLZ = 100^{\circ}$$ $\angle XLZ = 100^{\circ}$ $\Rightarrow \qquad \angle XLO + 90^{\circ} = 100^{\circ}$ $\Rightarrow \qquad \angle XLO = 10^{\circ}$ In $\triangle OLX$, $\Rightarrow \qquad OL = OX$ (radii) in $\triangle OLX$, OL = OX (radii) $\Rightarrow \qquad \angle OXL = \angle OLX = 10^{\circ}$ (Angles opposite to equal sides are equal) ___ Mathematics—10_____ Now, $$\angle XOL + \angle OLX + \angle OXL = 180^{\circ}$$ $\Rightarrow \qquad \angle XOL + 2 \times 10^{\circ} = 180^{\circ}$ $\Rightarrow \qquad \angle XOL = 160^{\circ}$ Now, $\angle YOL = 180^{\circ} - \angle XOL$ (Linear pair) $\Rightarrow \qquad \angle YOL = 180^{\circ} - 160^{\circ} = 20^{\circ}$ In $\triangle OLY$, $OL = OY$ (radii) $\Rightarrow \qquad \angle OYL = \angle OLY$ (Angles opposite to equal sides are equal) So, $\angle OYL + \angle OLY + \angle YOL = 180^{\circ}$ $\Rightarrow \qquad 2\angle OYL = 180^{\circ} - 20^{\circ} = 160^{\circ}$ $\Rightarrow \qquad \angle OYL = 80^{\circ}$ So, $\angle XYL = 80^{\circ}$ Join OA and OB. In triangles OAP and OBP, $$OA = OB$$ (Radii) $OP = OP$ (Common) PA = PB (Length of tangents drawn from an external point to circle are equal) $$\triangle OPA \cong \triangle OPB$$ (SSS congruency) $\therefore \qquad \angle OPA = \angle OPB = \frac{1}{2} \times 120^{\circ} = 60^{\circ} \tag{CPCT}$ As tangent to circle is \perp to its radius at the point of contact, so $\angle OAP = \angle OBP = 90^{\circ}$ In right angled $\triangle OAP$, $$\frac{AP}{OP} = \cos 60^{\circ} \Rightarrow \frac{AP}{OP} = \frac{1}{2}$$ $$\Rightarrow OP = 2AP$$ $$LHS = \left(1 + \frac{1}{\tan^{2}\theta}\right)\left(1 + \frac{1}{\cot^{2}\theta}\right)$$ $$= (1 + \cot^{2}\theta)(1 + \tan^{2}\theta)$$ $$= \csc^{2}\theta \cdot \sec^{2}\theta$$ $$= \frac{1}{\sin^{2}\theta \cos^{2}\theta}$$ $$= \frac{1}{\sin^{2}\theta (1 - \sin^{2}\theta)}$$ $$= \frac{1}{\sin^{2}\theta - \sin^{4}\theta} = RHS$$ _ Mathematics—10_ | 31. | Daily wages (\mathbf{T}) | Number of workers (f) | c.f. | |-----|----------------------------|-----------------------|------| | | 125 | 6 | 6 | | | 130 | 20 | 26 | | | 135 | 24 | 50 | | | 140 | 28 | 78 | | | 145 | 15 | 93 | | | 150 | 4 | 97 | | | 160 | 2 | 99 | | | 180 | 1 | 100 | $$N = 100$$ (even) Median is mean of the values of observation at $\left(\frac{N}{2}\right)^{th}$ and $\left(\frac{N}{2}+1\right)^{th}$ places, when N is even. Now, $$\frac{N}{2} = 50, \frac{N}{2} + 1 = 51$$ Value of 50th observation = 135 Value of 51st observation = 140 ∴ Median = $$\frac{135 + 140}{2}$$ = ₹ 137.5 ## 32. Let sister's present age = x years then girl's present age = 2x years According to given condition, $$(x + 4)(2x + 4) = 160$$ $$\Rightarrow 2x^{2} + 4x + 8x + 16 = 160$$ $$\Rightarrow 2x^{2} + 12x - 144 = 0$$ $$\Rightarrow x^{2} + 6x - 72 = 0$$ $$\Rightarrow (x + 12)(x - 6) = 0$$ $$\Rightarrow x + 12 = 0 \text{ or } x - 6 = 0$$ $$\Rightarrow x = -12 \text{ (rejected) or } x = 6$$ ∴ Sister's present age = 6 years Girl's present age = 12 years OR Since, x = -2 is root of the equation $3x^2 + 7x + p = 0$, then it must satisfy it. So, $$3(-2)^2 + 7(-2) + p = 0$$ $\Rightarrow 12 - 14 + p = 0$ $$\Rightarrow$$ $p=2$ Given equation is, $$x^{2} + k(4x + k - 1) + p = 0$$ $$\Rightarrow x^{2} + 4kx + k(k - 1) + 2 = 0$$ [:: p = 2] As roots are equal, then D = 0 As roots are equal, then $$D = 0$$ $$\Rightarrow (4k)^2 - 4 \times 1 \times [k(k-1) + 2)] = 0$$ $$\Rightarrow 16k^2 - 4(k^2 - k + 2) = 0$$ $$\Rightarrow 16k^2 - 4k^2 + 4k - 8 = 0$$ $$\Rightarrow 12k^2 + 4k - 8 = 0$$ $$\Rightarrow 3k^2 + k - 2 = 0$$ $$\Rightarrow 3k(k+1) - 2(k+1) = 0$$ $$\Rightarrow (3k-2)(k+1) = 0$$ $$\Rightarrow k = \frac{2}{3} \text{ or } -1$$ 33. Given: $\triangle ABC$ and $\triangle PQR$ such that $\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AL}{PM}$ where AL and PM are the medians of $\triangle ABC$ and $\triangle PQR$ respectively. To prove: $\triangle ABC \sim \triangle PQR$ Proof: We have, $$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AL}{PM}$$ $$\frac{AB}{PQ} = \frac{2BL}{2QM} = \frac{AL}{PM}$$ $$\frac{AB}{PQ} = \frac{BL}{QM} = \frac{AL}{PM}$$ (: AL and PM are medians) ...(i) In $\triangle ABL$ and $\triangle PQM$, $$\frac{AB}{PQ} = \frac{BL}{QM} = \frac{AL}{PM}$$ [using (i)] $\Delta ABL \sim \Delta PQM$ ∴. (SSS similarity) $\angle B = \angle Q$ \Rightarrow [Corresponding angles of similar Δ 's are equal]...(ii) In $\triangle ABC$ and $\triangle PQR$, $$\frac{AB}{PQ} = \frac{BC}{QR}$$ (given) $$\Rightarrow$$ $\angle B = \angle Q$...[from (ii)] $\triangle ABC \sim \triangle PQR$ \Rightarrow ...(SAS similarity) __ Mathematics—10_ **34.** Let 'r' be the common base radius each of the conical and the cylindrical portion. Height of conical portion, $h_1 = 2m$ Slant height of conical portion, l = 2.9 m Now, $$l = \sqrt{r^2 + h_1^2}$$ $$\Rightarrow \qquad 2.9 = \sqrt{r^2 + (2)^2}$$ $$\Rightarrow \qquad 8.41 = r^2 + 4$$ $$\Rightarrow \qquad r^2 = 4.41$$ $$\Rightarrow \qquad r = 2.1 \text{ m}$$ Now, height of cylindrical portion, h = 4 m Area of canvas needed = $$2\pi rh + \pi rl$$ = $2 \times \frac{22}{7} \times 2.1 \times 4 + \frac{22}{7} \times 2.1 \times 2.9$ = $52.8 + 19.14$ $= 71.94 \text{ m}^2$ For hemisphere: Radius, r = 3.5 cm For cone: Radius of base, $$r = 3.5$$ cm Let height $$= h$$ cm Total volume = Volume of hemisphere + Volume of cone $$\Rightarrow 166\frac{5}{6} = \frac{2}{3}\pi r^{3} + \frac{1}{3}\pi r^{2}h$$ $$166\frac{5}{6} = \frac{2}{3}\pi (3.5)^{3} + \frac{1}{3}\pi (3.5)^{2}h$$ $$\Rightarrow \frac{1001}{6} = \frac{2}{3} \times \frac{22}{7} \times 3.5 \times 3.5 \times 3.5 \times 3.5 \times 3.5 \times h$$ $$\Rightarrow 77(h + 7) = 1001$$ $$\Rightarrow h + 7 = 13$$ $$\Rightarrow h = 6 \text{ cm}$$ _ Mathematics—10_____ Height of toy = $$h + 3.5 = 6 + 3.5 = 9.5$$ cm Surface area of hemisphere = $2\pi r^2 = 2\pi (3.5)^2$ $$= 2 \times \frac{22}{7} \times 3.5 \times 3.5 = 77 \text{ cm}^2$$ $$Cost = 710 \times 77 = 770$$ 35. First we represent the data in grouped frequency distribution table. ٠. | Marks
(C.I.) | x_i | Number of students (f_i) | $u_i = \frac{x_i - A}{h} = \frac{x_i - 55}{10}$ | $f_i u_i$ | |-----------------|------------------|----------------------------|---|------------------------| | 0 - 10 | 5 | 3 | -5 | -15 | | 10 – 20 | 15 | 5 | -4 | -20 | | 20 - 30 | 25 | 7 | -3 | -21 | | 30 - 40 | 35 | 12 | -2 | -24 | | 40 - 50 | 45 | 10 | -1 | -10 | | 50 - 60 | $\boxed{55} = A$ | 20 | 0 | 0 | | 60 - 70 | 65 | 7 | 1 | 7 | | 70 – 80 | 75 | 6 | 2 | 12 | | 80 – 90 | 85 | 2 | 3 | 6 | | 90 - 100 | 95 | 8 | 4 | 32 | | | | $\Sigma f_i = 80$ | | $\Sigma f_i u_i = -33$ | Mean = A + $$\frac{\Sigma f_i u_i}{\Sigma f_i} \times h$$ = $55 - \frac{33}{80} \times 10$ = $55 - 4.125 = 50.875$ marks $$= 55 - 4.125 = 50.875$$ marks **36.** (i) We have, $$a = 32$$ and $d = -1$ Now, $$a_5 = a + 4d$$ $\Rightarrow a_5 = 32 + 4(-1) = 28$ $$[\because a_n = a + (n-1)d]$$ So, there are 28 logs in the 5th row from the bottom. (ii) As $$a = 32$$ and $d = -1$ Now, $$a_2 = a + d$$ = 32 - 1 = 31 So, there are 31 logs in the 2nd row from the bottom. (iii) As, $$S_n = \frac{n}{2} [2a + (n-1)d]$$ $$S_6 = \frac{6}{2} [2 \times 32 + 5(-1)]$$ $$= 3 \times 59$$ $$= 177$$ Hence, 177 logs have been placed. __ Mathematics—10____ $$S_n = 228$$ $$\Rightarrow \frac{n}{2}[2a + (n-1)d] = 228$$ $$\Rightarrow n[2 \times 32 + (n-1)(-1)] = 456$$ $$\Rightarrow n^2 - 65n + 456 = 0$$ $$\Rightarrow (n-8)(n-57) = 0$$ $$\Rightarrow n = 8 \text{ or } n = 57$$ When $n = 8$, then $$a_8 = a + 7d$$ $$= 32 + 7(-1)$$ $$= 32 - 7$$ $$= 25$$ When $n = 57$, then $$a_{57} = a + 56d$$ $$= 32 + 56(-1)$$ $$= -24$$ Since number of logs placed in a row can't be negative, so n = 57 is rejected. So, 8 rows are needed to put all 228 logs of wood. 37. (i) The given points are: A(2, 7) and R(11, 5) Now, $$AR = \sqrt{(11-2)^2 + (5-7)^2}$$ $$= \sqrt{81+4} = \sqrt{85} \text{ units}$$ (ii) The given points are: D(6, 8) and P(9, 8) Coordinates of X are: $$\left(\frac{6+9}{2}, \frac{8+8}{2}\right)$$ i.e. $\left(\frac{15}{2}, 8\right)$. (iii) The given points are: B(2, 3) and E(6, 3) BE = $$\sqrt{(6-2)^2 + (3-3)^2}$$ = $\sqrt{16+0}$ = 4 units OR The given points are B(2, 3), E(6, 3), T(13, 3). Now, $$BE = \sqrt{(6-2)^2 + (3-3)^2}$$ $$= \sqrt{16+0} = 4 \text{ units}$$ and $$ET = \sqrt{(13-6)^2 + (3-3)^2}$$ $$= \sqrt{49+0} = 7 \text{ units}$$ and $$BT = \sqrt{(13-2)^2 + (3-3)^2}$$ $$= \sqrt{121+0} = 11 \text{ units}$$ As $$BT = BE + ET$$ Hence B, E and T are in the same straight line. **38.** (*i*) In ΔB'CO $$\frac{B'C}{OC} = \tan 60^{\circ}$$ $$\Rightarrow$$ $$\frac{B'C}{40} = \sqrt{3}$$ \Rightarrow $$B'C = 40\sqrt{3} \text{ m}$$:. Height of top of second floor = $(40\sqrt{3} + 1.4)$ m = (69.2 + 1.4)m = 70.6 m (ii) In ΔOCB, $$\frac{x}{15\sqrt{3}} = \cot 30^{\circ}$$ $$x = 15\sqrt{3} \times \sqrt{3}$$ $$= 45 \text{ m}$$ \therefore Width of river = 45 m $[\because \cot \theta = \frac{\text{base}}{\text{perpendicular}}$ $$(OB')^2 = (40)^2 + (30)^2$$ = 1600 + 900 = 2500 (Pythagoras Theorem) OB' = 50 m $\cos \theta = \frac{40}{50} = \frac{4}{5}$ *:*. (iii) We have, $$\angle CO'B' = \theta$$ $$(\mathrm{O'B'})^2 = a^2 + b^2$$ $$O'B' = \sqrt{a^2 + b^2}$$ Now, \Rightarrow $$\sec \theta = \frac{\text{hypotenuse}}{\text{base}}$$ $$= \frac{\text{O'B'}}{\text{O'C}} = \frac{\sqrt{a^2 + b^2}}{b}$$ [Pythagoras theorem]